vSAN and Data-At-Rest Encryption – Rebooted (i.e. Part 2)

 

Encryption is here, now shipping with vSphere 6.5.

I first wrote about vSAN and Encryption here:

Virtual SAN and Data-At-Rest Encryption – https://livevirtually.net/2015/10/21/virtual-san-and-data-at-rest-encryption/

At the time, I knew what was coming but couldn’t say. Also, the vSAN team had plans that changed. So, let’s set the record straight.

vSAN

  • Does not support Self Encrypting Drives (SEDs) with encryption enabled.
  • Does not support controller based encryption.
  • Supports 3rd party software based encryption solutions like HyTrust DataControl and Dell EMC Cloud Link.
  • Supports the VMware VM Encryption released with vSphere 6.5
  • Will support its own VMware vSAN Encryption in a future release.

At VMworld 2016 in Barcelona VMware announced vSphere 6.5 and with it, VM Encryption. In the past, VMware relied on 3rd party encryption solutions, but now, VMware has its own. For more details, check out:

What’s new in vSphere 6.5: Security – https://blogs.vmware.com/vsphere/2016/10/whats-new-in-vsphere-6-5-security.html

In this, Mike Foley briefly highlights a few advantages of VM Encryption. Stay tuned for more from him on this topic.

In addition to what Mike highlighted, VM encryption is implemented using VAIO Filters, can be enabled per VM object (vmdk), will encrypt VM data no matter what storage solution is implemented (e.g. object, file, block using vendors like VMware vSAN, Dell Technologies, NetApp, IBM, HDS, etc.), and satisfies data-in-flight and data-at-rest encryption. The solution does not require SED’s so it works with all the commodity HDD, SSD, PCIe, and NVMe devices and integrates with several third party Key Management solutions. Since VM Encryption is set via policy, that policy could extended across to public clouds like Cloud Foundation on IBM SoftLayer, VMware Cloud on AWS, VMware vCloud Air or to any vCloud Air Network partner. This is great because your VM’s could live in the cloud but you will own and control the encryption keys. And you can use different keys for different VM’s.

At VMworld 2016 in Las Vegas VMware announced the upcoming vSAN Beta. For more details see:

Virtual SAN Beta – Register Today! – https://blogs.vmware.com/virtualblocks/2016/09/07/virtual-san-beta-register-today/

This vSAN Beta includes vSAN encryption targeted for a future release of vSphere. vSAN Encryption will satisfy data-at-rest encryption. You might ask why vSAN Encryption would be necessary if vSphere has VM Encryption? I will say that you should always look to use VM Encryption first. The one downside to VM Encryption is that since the VM’s data is encrypted as soon as it leaves the VM and hits the ESXi kernel, each block is unique, so no matter what storage system that data goes to (e.g. VMware vSAN, Dell Technologies, NetApp, IBM, HDS, etc.) that block can’t be deduped or compressed. The benefit of vSAN encryption will be that the encryption will be done at the vSAN level. Data will be send to the vSAN cache and encrypted at that tier. When it is later destaged, it will be decrypted, deduped, compressed, and encrypted when its written to the capacity tier. This satisfies the data-at-rest encryption requirements but not data-in-flight. It does allow you to take advantage of the vSAN dedupe and compression data services and it’s one key for the entire vSAN datastore.

It should be noted that both solutions will require a 3rd party Key Management Server (KMS) and the same one can be used for both VM Encryption and vSAN Encryption. The KMS must support the Key Management Interoperability Protocol (KMIP) 1.1 standard. There are many that do and VMware has tested a lot of them. We’ll soon be publishing a list, but for now, check with your KMS vendor or your VMware SE for details.

VMware is all about customer choice. So, we offer a number of software based encryption options depending on your requirements.

It’s worth restating that VM Encryption should be the standard for software based encryption for VM’s. After reviewing vSAN Encryption, some may choose it instead to go with vSAN encryption if they want to take advantage of deduplication and compression. Duncan Epping provides a little more detail here:

The difference between VM Encryption in vSphere 6.5 and vSAN encryption – http://www.yellow-bricks.com/2016/11/07/the-difference-between-vm-encryption-in-vsphere-6-5-and-vsan-encryption/

 

In summary:

  1. Use VM Encryption for Hybrid vSAN clusters
  2. Use VM Encryption on All-Flash if storage efficiency (dedupe/compression) is not critical
  3. Wait for vSAN native software data at rest encryption if you must have dedupe/compression on All-Flash

 

VMware Storage Technology Names & Acronyms

  • vSAN = VMware’s Software Defined Storage Solution formerly known as Virtual SAN or VSAN. Now the only acceptible name is “vSAN” with the little “v”.
  • SPBM = Storage Policy Based Management
  • VASA = vSphere API’s for Storage Awareness
  • VVol = Virtual Volume
  • PE = Protocol Endpoint
  • VAAI = vSphere API’s for Array Integration
  • VAIO Filtering = vSphere API’s for IO Filtering
  • VR = vSphere Replication
  • SRM = Site Recovery Manager
  • VDP = vSphere Data Protection
  • vFRC = vSphere Flash Read Cache
  • VSA = vSphere Storage Appliance (end of life)
  • VMFS = Virtual Machine File System
  • SvMotion = Storage vMotion
  • XvMotion – Across Host, Cluster, vCenter vMotion (without shared storage)
  • SDRS = Storage Distributed Resource Scheduler
  • SIOC = Storage Input Output Control
  • MPIO = Multi Path Input Output

XvMotion, Cross-vCenter vMotion, VVols, LVM active/active, LVM active/passive, SRM & Stretched Storage, VAIO Filters

Recently, with the announcement of the availability of VVols in vSphere.NEXT I was asked to give a deep dive presentation to a customer with a focus on what VVols meant for protection VM’s. While at EMC as a vSpecialist I lead a group focused on protecting VM’s so this is something I’ve been interested in for awhile. I’m a big fan of RecoverPoint and am excited about virtual RecoverPoint’s ability to offer continuous data protection for VSAN as I indicated here.   I’m also a huge fan of VPLEX and spent a lot of time during my days at EMC discussing what it could do. The more I dug into what VVols could do to help with various VM movement and data protection schemes the more I realized there was much to be excited about but also much need for clarification. So, after some research, phone calls, and email exchanges with people in the know I gathered the information and felt it would be good information to share.

What follows is kind of a “everything but the kitchen sink” post on various ways to move and protect VM’s. There were several pieces of the puzzle to put together so here are the past, present, and future options.

XvMotion (Enhanced vMotion) – vMotion without shared storage – Released in vSphere 5.1

In vSphere 5.1 VMware eliminated the shared storage requirement of vMotion.

  • vMotion – vMotion can be used to non-disruptively move a VM from one host to another host provided both hosts have access to the same shared storage (i.e. A datastore backed by a LUN or volume on a storage array or shared storage device). Prior to vSphere 5.1 this was the only option to non-disruptively move a VM between hosts.
  • Storage vMotion – this allows VM vmdk’s to be non-disruptively moved from one datastore to another datastore provided the host has access to both.
  • XvMotion – As of vSphere 5.1. XvMotion allows a VM on one host, regardless of the storage it is using, to be non-disruptively moved to another host, regardless of the storage it is using. Shared storage is no longer a requirement. The data is moved through the vMotion network. This was a major step towards VM mobility freedom, especially when you think of moving workloads in and out of the cloud.
  • For more information see: Requirements and Limitations for vMotion Without Shared Storage

Cross-vCenter vMotion – Announced at VMworld 2014, available in vSphere.NEXT (future release)

This new feature was announced during the VMworld 2014 US – General Session – Tuesday.

Continue reading “XvMotion, Cross-vCenter vMotion, VVols, LVM active/active, LVM active/passive, SRM & Stretched Storage, VAIO Filters”