XvMotion, Cross-vCenter vMotion, VVols, LVM active/active, LVM active/passive, SRM & Stretched Storage, VAIO Filters

Recently, with the announcement of the availability of VVols in vSphere.NEXT I was asked to give a deep dive presentation to a customer with a focus on what VVols meant for protection VM’s. While at EMC as a vSpecialist I lead a group focused on protecting VM’s so this is something I’ve been interested in for awhile. I’m a big fan of RecoverPoint and am excited about virtual RecoverPoint’s ability to offer continuous data protection for VSAN as I indicated here.   I’m also a huge fan of VPLEX and spent a lot of time during my days at EMC discussing what it could do. The more I dug into what VVols could do to help with various VM movement and data protection schemes the more I realized there was much to be excited about but also much need for clarification. So, after some research, phone calls, and email exchanges with people in the know I gathered the information and felt it would be good information to share.

What follows is kind of a “everything but the kitchen sink” post on various ways to move and protect VM’s. There were several pieces of the puzzle to put together so here are the past, present, and future options.

XvMotion (Enhanced vMotion) – vMotion without shared storage – Released in vSphere 5.1

In vSphere 5.1 VMware eliminated the shared storage requirement of vMotion.

  • vMotion – vMotion can be used to non-disruptively move a VM from one host to another host provided both hosts have access to the same shared storage (i.e. A datastore backed by a LUN or volume on a storage array or shared storage device). Prior to vSphere 5.1 this was the only option to non-disruptively move a VM between hosts.
  • Storage vMotion – this allows VM vmdk’s to be non-disruptively moved from one datastore to another datastore provided the host has access to both.
  • XvMotion – As of vSphere 5.1. XvMotion allows a VM on one host, regardless of the storage it is using, to be non-disruptively moved to another host, regardless of the storage it is using. Shared storage is no longer a requirement. The data is moved through the vMotion network. This was a major step towards VM mobility freedom, especially when you think of moving workloads in and out of the cloud.
  • For more information see: Requirements and Limitations for vMotion Without Shared Storage

Cross-vCenter vMotion – Announced at VMworld 2014, available in vSphere.NEXT (future release)

This new feature was announced during the VMworld 2014 US – General Session – Tuesday.

Continue reading “XvMotion, Cross-vCenter vMotion, VVols, LVM active/active, LVM active/passive, SRM & Stretched Storage, VAIO Filters”

Virtual SAN Disaster Recovery – vSphere Replication (available now) or Virtual RecoverPoint (coming soon), choose your protection!

I’m often asked how to protect Virtual SAN (VSAN). Its simple, any product focused on protecting a virtual machine (VM) will work for protecting VM’s sitting on a VSAN enabled vSphere cluster. VMware offers VDP/VDPA for backup & recovery and there are many other VMware partners with backup & recovery solutions focused on protecting VM’s. Backup & Recovery is a great way to protect data but some customers like the benefit of more granular recovery points that comes from data replication either locally or to a disaster recovery site.

To protect VSAN data in a primary site to a remote disaster recovery site VMware offers vSphere Replication (VR) to replicate the VM data sitting on a VSAN Datastore over the DR site. Of course Site Recovery Manager (SRM) is supported to automate failover, failback and testing. The VR/SRM combined solution can also be used for planned data center migrations. Here are a few great write-ups on the topics:

VMware Virtual SAN Interoperability: vSphere Replication and vCenter Site Recovery Manager

Virtual SAN Interoperability – Planned migration with vSphere Replication and SRM

VSAN and vSphere Replication Interop

One of the main benefits of VR is that it will work to replicate VM data on any storage to another site with hosts connected to any other storage. So, VSAN can be the source, the target, or both.

VSAN & VR

 

vSphere Replication can be set to asynchronously replicate every day, hour, or up to every 15 minutes. Thus providing a Recovery Point Objective (RPO) of up to 15 minutes. For many customers, this is “good enough”. For some customer workloads, asynchronous replication is not “good enough”. They need synchronous replication protection and there are several solutions in the market. One that I’ve been a big fan of for a long time is EMC’s RecoverPoint which has a great reputation for protecting enterprise mission critical data and applications.  Essentially it splits every write transaction, journals it, and synchronously makes a copy of it either locally or to a remote DR site without impacting application performance. Of course there are more details but this is essentially what it does which results in being able to recover back to any point in time. Often it’s labeled as “Tivo or DVR for the data center”. One other benefit of RecoverPoint is it can replicate data from any storage to any storage, as long as there is a splitter for the storage. EMC VNX and VMAX storage arrays have splitters built in.

The big news that just came out last week that peeked my interest is that EMC is now offering a Beta of a completely software based RecoverPoint solution that embeds the splitter into vSphere. This brings the RecoverPoint benefits to any VMware customer running VM’s on any storage: block, file, or of course even VSAN. The EMC initiative is call Project Mercury and for more information check out:

Summer Gift Part 1 – Project Mercury Beta Open!

I’m excited that VSAN customers will have a choice for data protection, asynchronously with 15 minute RPO using vSphere Replication or continuous, synchronous, and asynchronous with EMC’s Virtual RecoverPoint.